Respuesta :

we are given

[tex] \frac{(n^4-10n^2+24)}{(n^4-9n^2+18)}  [/tex]

Firstly, we will factor numerators and denominators

[tex] \frac{(n^4-10n^2+24)}{(n^4-9n^2+18)}=\frac{(n^2-6)(n^2-4)}{(n^2-3)(n^2-6)}  [/tex]

we can see that

n^2 -6 is factor on both numerator and denominator

so, it will get cancelled

and n^2 -6 can not be equal to 0

so, one of restriction is

[tex] n^2-6\neq 0 [/tex]

[tex] n\neq -+ \sqrt{6}  [/tex]

we can simplify it

[tex] \frac{(n^4-10n^2+24)}{(n^4-9n^2+18)}=\frac{(n^2-4)}{(n^2-3)}  [/tex]

we know that denominator can not be zero

[tex] n^2-3\neq 0 [/tex]

[tex] n\neq -+ \sqrt{3}  [/tex]

so, option-B.......Answer

Q&A Education