Respuesta :

we are given

[tex] \frac{y^2}{y-3}*\frac{y^2-y-6}{y^2+1y} [/tex]

we know that denominators can not be zero

so, restrictions would be values of y where denominator is not zero

[tex] y-3\neq 0 [/tex]

[tex] y\neq 3 [/tex]

[tex] y^2+1y \neq 0 [/tex]

[tex] y(y+1) \neq 0 [/tex]

[tex] y \neq 0 [/tex]

[tex] y \neq -1 [/tex]

so, restrictions are

[tex] y \neq 0 [/tex]

[tex] y \neq -1 [/tex]

[tex] y\neq 3 [/tex]

[tex] \frac{y^2}{y-3}*\frac{y^2-y-6}{y^2+1y} [/tex]

now, we can factor numerators and denominator

and then we can simplify it

[tex] \frac{y^2}{y-3}*\frac{y^2-y-6}{y^2+1y}=\frac{y^2}{y-3}*\frac{(y-3)(y+2)}{y(y+1)} [/tex]

now, we can cancel it

[tex] \frac{y^2}{y-3}*\frac{y^2-y-6}{y^2+1y}=\frac{y(y+2)}{y+1} [/tex]

[tex] \frac{y^2}{y-3}*\frac{y^2-y-6}{y^2+1y}=\frac{y^2+2y}{y+1} [/tex]

so,

option-B..........Answer

Q&A Education