In the expansion of
[tex](1 - \frac{x}{4} ) {}^{n} [/tex]
, the coefficient of
[tex]x {}^{2} [/tex]
is
[tex] \frac{21}{16} [/tex]
. Find the value of n.

Respuesta :

By the binomial theorem, the [tex]x^2[/tex] term in the expansion of [tex]\left(1-\frac x4\right)^n[/tex] is

[tex]\dbinom n21^{n-2}\left(-\dfracx4\right)^2=\dfrac{n!}{2!(n-2)!}\dfrac{x^2}{16}[/tex]

which suggests that the contribution of the binomial coefficient should make up the remaining factor of 21. That is,

[tex]\dfrac{n!}{2!(n-2)!}=\dfrac{n(n-1)}2=21\implies n=7[/tex]

Q&A Education