Respuesta :

The vertex form will be: [tex] y=9(x-0)^2 -1 [/tex]

Explanation

The vertex form of any quadratic is :  [tex] y= a(x-h)^2 +k [/tex] where [tex] (h,k) [/tex] is the vertex point.

Given equation is :   [tex] y= 9x^2 -1 [/tex]

[tex] x^2 [/tex] can be rewritten as [tex] (x)^2 [/tex] or [tex] (x-0)^2 [/tex]

Thus,

[tex] y=9x^2-1\\\\ y=9(x-0)^2 -1 [/tex]

This equation is in form of  [tex] y= a(x-h)^2 +k [/tex]

So, the vertex form will be: [tex] y=9(x-0)^2 -1 [/tex]

Q&A Education