The Lengths of the shorter altitude and the shorter side of parallelogram are 9cm and root 82 cm, respectively. The Length of a longer diagonal is 15 cm. What is the area of this parallelogram

Respuesta :

frika

Consider parallelogram ABCD. The shorter sides are AB and CD, so [tex]AB=CD=\sqrt{82}[/tex] cm.

The shorter altitudes are BH=CF=9 cm.

1. Consider right triangle FCD:

[tex]CD^2=DF^2+CF^2,[/tex]

[tex]\sqrt{82}^2=9^2+FD^2,\\ \\FD^2=82-81=1,\\ \\FD=1 cm.[/tex]

2. Consider right triangle FCA:

[tex]CA^2=DF^2+FA^2,[/tex]

[tex]15^2=9^2+FA^2,\\ \\FA^2=225-81=144,\\ \\FA=12 cm.[/tex]

3.

[tex]FA=AD+FD,\\ \\AD=12-1=11 cm.[/tex]

4. Therefore, the area of parallelogram ABCD is

[tex]A_{ABCD}=AD\cdot BH=11\cdot 9=99[/tex] sq. cm.

Answer: 99 sq. cm.


Ver imagen frika
Q&A Education