Calculate the pressure exerted by ar for a molar volume of 0.470 l⋅mol−1 at 295 k using the van der waals equation of state. The van der waals parameters a and b for ar are 1.355 bar⋅dm6⋅mol−2 and 0.0320 dm3⋅mol−1, respectively.

Respuesta :

The van der Waals equation is given as:

[tex](P+a(\frac{n}{V})^{^{2}})(V-nb) = nRT[/tex]  -(1)

where, P is pressure, T is temperature, V is volume, R is universal gas constant, n is number of moles, and a and b are van der Waals constant.

Given values are:

Volume, V = 0.470 L

Number of moles, n = 1 mol

Temperature, T = 295 K

van der Waals constant, a = [tex]1.355 bar dm^{6}mol^{-2}[/tex] and b = [tex]0.320 dm^{3}mol^{-1}[/tex]

Substituting the values in equation (1):

[tex](P+1.355(\frac{1}{0.470})^{^{2}})(0.470-1\times 0.0320) = 1\times 0.08314\times 295[/tex]

[tex]P = \frac{1\times 0.08314\times 295}{(0.470-1\times 0.0320)} - 1.355(\frac{1}{0.470})^{^{2}}[/tex]

[tex]P = 49.682 atm[/tex]

Hence, the pressure exerted by [tex]Ar[/tex] using the van der Waals equation  is [tex]49.682 atm[/tex].

Q&A Education