Respuesta :

[tex]\text{We have been given the function }\\ f(x)=(x-1)^2-4\\ \text{Let f(x)=y}\\ y=(x-1)^2-4\\ \text{Swap x and y, we get}\\ \\ x=(y-1)^2-4\\ \text{Now we solve for y}\\ (y-1)^2=x+4\\ \\ y-1=\pm \sqrt{x+4}\\ \\ y=1\pm \sqrt{x+4}\\ \\ f^{-1}(x)=1\pm \sqrt{x+4}\\[/tex]

[tex]x+4\geq 0\\ x\geq -4\\ \text{Thus, the domain is given by}\\ x\in [-4,\infty )[/tex]

Answer:

  • The inverse function is:

               [tex]f^{-1}(x)=\sqrt{x+4}+1[/tex]

  • The domain of the inverse is:

                 [tex]x\geq -4[/tex]

Step-by-step explanation:

The function f(x) is given by:

                 [tex]f(x)=(x-1)^2-4[/tex]

The domain is restricted to x≤1

so that the function is one-one.

Also, the range of  function is:

[tex](x-1)^2\geq 0\\\\\\(x-1)^2-4\geq -4[/tex]

Now, as the function is one-one and it is onto as well.

Hence, the inverse of the function exist and it is a function as well.

and we find the inverse function as follows:

Keep f(x)=y

[tex](x-1)^2-4=y[/tex]

interchange x and y

[tex](y-1)^2-4=x[/tex]

Now we solve for y

[tex](y-1)^2=x+4\\\\y-1=\sqrt{x+4}\\\\y=\sqrt{x+4}+1[/tex]

Hence, the inverse function is:

          [tex]f^{-1}(x)=\sqrt{x+4}+1[/tex]

and the domain of inverse function is the range of the function.

Hence the domain is:

                [tex]x\geq -4[/tex]

Q&A Education