For this case we have the following function:
[tex] h (t) = t ^ 2 - 8t [/tex]
What we should do is evaluate the function for the different values of the independent variable.
We have then:
For x = 8:
[tex] h (8) = (8) ^ 2 - 8 (8) [/tex]
[tex] h (8) = 64 - 64 [/tex]
[tex] h (8) = 0 [/tex]
For x = 1.8:
[tex] h (1.8) = (1.8) ^ 2 - 8 (1.8) [/tex]
[tex] h (1.8) = 3.24 - 14.4 [/tex]
[tex] h (1.8) = -11.16 [/tex]
For x = x + 8:
[tex] h (x + 8) = (x + 8) ^ 2 - 8 (x + 8) [/tex]
[tex] h (x + 8) = x ^ 2 + 16x + 64-8x-64 [/tex]
[tex] h (x + 8) = x ^ 2 + 18x [/tex]
Answer:
The results of evaluating the function are:
[tex] h (8) = 0 [/tex]
[tex] h (1.8) = -11.16 [/tex]
[tex] h (x + 8) = x ^ 2 + 18x [/tex]