Right triangles abc and dbc with right angle c are given below. If cos(a)=15,ab=12 and cd=2, find the length of bd.

Respuesta :

see the attached figure to better understand the problem

we have that

[tex]cos(A)=\frac{1}{5} \\ AB=12\ units\\ CD=2\ units[/tex]

Step 1

Find the value of AC

we know that

in the right triangle ABC

[tex]cos (A)=(AC/AB)\\AC=AB*cos(A)[/tex]

substitute the values in the formula

[tex]AC=12*(1/5)\\ AC=2.4\ units[/tex]

Step 2

Find the value of BC

we know that

in the right triangle ABC

Applying the Pythagorean Theorem

[tex]AB^{2} =AC^{2}+BC^{2}\\ BC^{2}=AB^{2} -AC^{2}[/tex]

substitute the values

[tex]BC^{2}=12^{2} -2.4^{2}\\BC^{2}= 138.24\\ BC=11.76\ units[/tex]

Step 3  

Find the value of BD

we know that

in the right triangle BCD

Applying the Pythagorean Theorem

[tex]BD^{2} =DC^{2}+BC^{2}[/tex]

substitute the values  

[tex]BD^{2} =2^{2}+11.76^{2}[/tex]

[tex]BD=11.93\ units[/tex]

therefore

the answer is

the length of BD is 11.93 units

Ver imagen calculista

Answer: 17

Step-by-step explanation:

Q&A Education