The coordinates of the vertices of △pqr are p(2,−1), q(4,2), and r(6,0). Identify the perimeter of △pqr. Round each side length to the nearest tenth before adding.

Respuesta :

The perimeter of △pqr is 10.5

Explanation

The coordinates of the vertices of △pqr are p(2,−1), q(4,2), and r(6,0)

First we need to find the length of each side of the triangle using distance formula between two points.

The length of  pq [tex]=\sqrt{(2-4)^2+(-1-2)^2}=\sqrt{(-2)^2+(-3)^2}=\sqrt{4+9}=\sqrt{13}=3.6[/tex] ,

the length of qr [tex]=\sqrt{(4-6)^2+(2-0)^2}=\sqrt{4+4}=\sqrt{8}=2.8[/tex]

and the length of pr [tex]=\sqrt{(2-6)^2+(-1-0)^2}=\sqrt{16+1}=\sqrt{17}=4.1[/tex]

As the perimeter means the sum of all sides, so the perimeter [tex]=3.6+2.8+4.1=10.5[/tex]

Q&A Education