How many grams of sodium phosphate monobasic would we add to a liter and how many grams of sodium phosphate dibasic would we add to a liter to make a 0.1 m phosphate buffer at ph 6.86?

Respuesta :

Answer :

The correct answer   for Mass of Na₂HPO₄ = 4.457 g and mass of  NaH₂PO₄  = 8.23 g

Given :  pH = 6.86

Total concentration of Phosphate buffer = 0.1 M

Asked : Mass of  Sodium phosphate monobasic (NaH₂PO₄) = ?

Mass of  Sodium phosphate dibasic(Na₂HPO₄)= ?

Following steps can be done to find the masses of NaH₂PO₄ and Na₂HPO₄ :

(In phosphate buffer , Na+ ion from  NaH₂PO₄ and Na₂HPO₄ acts as spectator ion , so only H₂PO₄⁻ and HPO₄²⁻ will be considered )

Step 1 : To find pka

H₂PO₄⁻  <=> HPO₄²⁻  

The above reaction has pka = 7.2 ( from image shown )

Step 2 : Plug values in Hasselbalch- Henderson equation .

Hasselbalch -Henderson equation is to find pH  for buffer solution which is as follows :

[tex]pH = pka + log\frac{[A^-]}{[HA]}[/tex]

pH = 6.86         pKa = 7.2

[tex]6.86 = 7.2 + log \frac{[HPO_4^2^-]}{[H_2PO_4^-]}[/tex]

Subtracting  both side by 7.2

[tex]6.86-7.2 = 7.2 -7.2+ log \frac{[HPO_4^2^-]}{[H_2PO_4^-]}[/tex]

[tex]-0.34 =  log \frac{[HPO_4^2^-]}{[H_2PO_4^-]}[/tex]

Removing log

[tex]10^-^0^.^3^4 =   \frac{[HPO_4^2^-]}{[H_2PO_4^-]}[/tex]

[tex]\frac{[HPO_4^2^-]}{[ H_2PO_4^-]} = 0.457[/tex] ---------------- equation (1)

Step 3 : To find  molarity of H₂PO₄⁻ and HPO₄²⁻

Total concentration of buffer = [H₂PO₄⁻] + [HPO₄²⁻] = 0.1 M

Hence,  [H₂PO₄⁻ ] + [ HPO₄²⁻ ] =  0.1 M

Assume [H₂PO₄⁻ ] = x

So ,  [x ] + [ HPO₄²⁻ ] =  0.1 M

[ HPO₄²⁻ ] =  0.1 - x

Step 4 : Plugging value of [H₂PO₄⁻ ]  and  [ HPO₄²⁻ ]

[H₂PO₄⁻ ]  = x

 [ HPO₄²⁻ ] = 0.1 - x

Equation (1) = >[tex]\frac{[HPO_4^2^-]}{[ H_2PO_4^-]} = 0.457[/tex]

Plug value of [H₂PO₄⁻ ]  and  [ HPO₄²⁻ ] ( from step 3 ) into equation (1)  as :

[tex]\frac{[0.1 - x ]}{[ x]} = 0.457[/tex]

Cross multiplying

[tex]0.1 - x  = 0.457 x[/tex]

Adding x on both side

[tex]0.1 -x + x = 0.457 x + x[/tex]

[tex]0.1  = 1.457 x[/tex]

Dividing both side by 1.457

[tex]\frac{0.1}{1.457} = \frac{1.457 x }{1.457}[/tex]

x = 0.0686 M

Hence , [H₂PO₄⁻ ]  = x  = 0.0686 M

 [ HPO₄²⁻ ] = 0.1 - x

 [ HPO₄²⁻ ]  =   0.1 - 0.0686  

[ HPO₄²⁻ ] = 0.0314 M

Step 5 : To find moles of  H₂PO₄⁻ ( NaH₂PO₄) and HPO₄²⁻ (Na₂HPO₄ ) .

Molarity is defined as mole of solute per 1 L volume of solution .

Molarity of NaH₂PO₄ = 0.0686 M  or 0.0686 mole per 1 L

Molarity of Na₂HPO₄ = 0.0314 M  or 0.0314 mole per 1 L

Since  that volume of buffer solution  is 1 L , so Molarity  = mole

Hence Mole of NaH₂PO₄  = 0.0686 mol

Mole of Na₂HPO₄ = 0.0314 mol

Step 6 : To find mass  of Na₂HPO₄  and NaH₂PO₄

Moles of  Na₂HPO₄  and NaH₂PO₄  can be converted to their masses using molar mass as follows :

Molar mass of  Na₂HPO₄  = [tex]141.96 \frac{g}{mol}[/tex]

Molar mass of NaH₂PO₄ = [tex]119.98 \frac{g}{mol}[/tex]

[tex]Mass (g) = mole (mol)* molar mass(\frac{g}{mol})[/tex]

[tex]Mass of Na_2HPO_4 = 0.0314 mol * 141.96 \frac{g}{mol}[/tex]

Mass of Na₂HPO₄ = 4.457 g

[tex]Mass of NaH_2PO_4 = 0.0686 mol * 119.98 \frac{g}{mol}[/tex]

Mass of  NaH₂PO₄  = 8.23 g

Ver imagen HiramSobus
Q&A Education