Respuesta :

[tex]Given:\\\overline{PQ}=6x+25\\\overline{QR}=16-3x\\\\Finding:\overline{PR}[/tex]

[tex]If \; Q \; is \; a \; point \; in \; between \; the \; line \; segment \; \overline{PR}, \; \\ then \; the \; distance \; of \; line \; segment \; \overline{PR} \; \\ can \; be \; found \; by \; adding \; line \; segment \; \overline{PQ} \; and \; \overline{QR}.[/tex]

[tex]Using \; the \; concept \; \overline{PQ}+\overline{QR}=\overline{PR} \;,\\ we \; need \; to \; set \; up \; an \; equation \; given \; below:[/tex]

[tex]\overline{PR} =6x+25 +16-3x\\\\Step \; 1: Grouping \; Like \; Terms\\\overline{PR} =6x-3x+25 +16\\\\Step \; 2: Combining \; Like \; Terms\\\overline{PR} =3x+41[/tex]

Conclusion:

[tex]\overline{PR} \; is \; represented \; the \; expression \; 3x +41[/tex]

Answer:

PR =  3x + 41

Step-by-step explanation:

Given

PQ = 6x + 25

QR = 16 - 3x

Q is the common point on the line PR, thus dividing PR into PQ and QR.

Therefore, we can write,

PR = PQ + QR

PR = 6x + 25 + 16 - 3x

PR = 6x- 3x + 25 + 16

PR = 3x + 41

Therefore, PR =  3x + 41

Q&A Education