Respuesta :

gmany

Look at the picture.

Let |AE| = |AD| = b

We have a proportion:

[tex]\dfrac{x}{13}{y}=\dfrac{19}{y+a}=\dfrac{x}{y+2a}[/tex]

Solve for y from first proportion

[tex] \dfrac{13}{y}=\dfrac{19}{y+a}\ \ \ |\text{cross multiply}\\\\19y=13(y+a)\\\\19y=13y+13a\ \ \ \ |-13y\\\\6y=13a\ \ \ |:6\\\\y=\dfrac{13}{6}a [/tex]

Substitute to the second proportion

[tex] \dfrac{19}{y+a}=\dfrac{x}{y+2a}\\\downarrow\\\dfrac{19}{\frac{13}{6}a+a}=\dfrac{x}{\frac{13}{6}a+2a}\\\\\dfrac{19}{\frac{13}{6}a+\frac{6}{6}a}=\dfrac{x}{\frac{13}{6}a+\frac{12}{6}a}\\\\\dfrac{19}{\frac{19}{6}a}=\dfrac{x}{\frac{25}{6}a}\ \ \ \ |\dot a\neq0\\\\\dfrac{19}{\frac{19}{6}}=\dfrac{x}{\frac{25}{6}}\\\\19\cdot\dfrac{6}{19}=x\cdot\dfrac{6}{25}\\\\6=\dfrac{6x}{25}\ \ \ |\cdot25\\\\6x=6\cdot25\ \ \ |:6\\\\x=25 [/tex]

Answer: B. 25

Ver imagen gmany
Q&A Education