Respuesta :

Answer:

[tex]a_n=22-4n[/tex]

Step-by-step explanation:

We are asked to find the formula of arithmetic sequence, whose 3rd term is 10 and 51st term is [tex]-182[/tex].

We know that an arithmetic sequence is in format [tex]a_n=a_1+(n-1)d[/tex], where,

[tex]a_n[/tex] = nth term of sequence,

[tex]a_1[/tex] = 1st term of sequence,

n = Number terms in the sequence.

d = Common difference.

Upon substituting our given values, we will get two equation as:

[tex]a_3=a_1+(3-1)d...(1)[/tex]  

[tex]10=a_1+2d...(1)[/tex]

[tex]a_51=a_1+(51-1)d...(2)[/tex]

[tex]-182=a_1+50d...(2)[/tex]

Subtracting equation (2) from equation (1), we will get:

[tex]10-(-182)=a_1-a_1+2d-50d[/tex]

[tex]10+182=-48d[/tex]

[tex]192=-48d[/tex]

Switch sides:

[tex]-48d=192[/tex]

[tex]\frac{-48d}{-48}=\frac{192}{-48}[/tex]

[tex]d=-4[/tex]

Upon substituting [tex]d=-4[/tex]in equation (1), we will get:

[tex]10=a_1+2(-4)[/tex]

[tex]10=a_1-8[/tex]

[tex]10+8=a_1-8+8[/tex]

[tex]18=a_1[/tex]

Upon substituting [tex]a_1=18[/tex] and [tex]d=-4[/tex] in arithmetic sequence formula, we will get:

[tex]a_n=18+(n-1)-4[/tex]

[tex]a_n=18-4n+4[/tex]

[tex]a_n=22-4n[/tex]

Therefore, our required formula would be [tex]a_n=22-4n[/tex].

Q&A Education