Respuesta :

we are given

[tex] \frac{1}{f} =\frac{1}{d_0} +\frac{1}{d_i} [/tex]

we can solve for di

so, firstly we will isolate di

[tex] \frac{1}{f}-\frac{1}{d_0} = \frac{1}{d_i} [/tex]

[tex] \frac{1}{d_i}=\frac{1}{f}-\frac{1}{d_0} [/tex]

now, we can simplify right side by taking common denominator

[tex] \frac{1}{d_i}=\frac{d_0}{fd_0}-\frac{f}{fd_0} [/tex]

[tex] \frac{1}{d_i}=\frac{d_0-f}{fd_0} [/tex]

now, we can inverse them to find di

[tex] d_i=\frac{fd_0}{d_0-f} [/tex]...............Answer

Mirror Equations:

Concave Mirror Equation Formula :

1/f = 1/d0 + 1/di

Where, f - Focal length, di - Image distance, d0 - Object distance.

Solve:

Solution: 1/f = 1/do + 1/di ==> di = fdo/(do-f)

Solve for di: 1/f = 1/do + 1/di

Step 1: get the, 1/di by itself:

Subtract both sides by 1/do:

1/f - 1/do = 1/do + 1/di - 1/do

= 1/di = 1/f - 1/do.

Find Lowest Common Multiple (LCM.). ==> FDO

1/di = do/fdo - f / fdo

1/di = (do -f) / fdo

Answer: di = fdo / (do-f)

Therefore, Your answer would be, di = fdo / (do-f)

Hope that helps!!!! : )

Q&A Education