Respuesta :
so the original price paid for the car is 19,750, then it went up to 23,950, so pretty much 4,200 more, namely the markup.
if we take 19750 as the 100%, what is 4200 off of it as a percentage?
[tex]\bf \begin{array}{ccll} amount&\%\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ 19750&100\\ 4200&x \end{array}\implies \cfrac{19750}{4200}=\cfrac{100}{x} \\\\\\ x=\cfrac{4200\cdot 100}{19750}\implies x\approx 21.26582[/tex]
if we take 19750 as the 100%, what is 4200 off of it as a percentage?
[tex]\bf \begin{array}{ccll} amount&\%\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ 19750&100\\ 4200&x \end{array}\implies \cfrac{19750}{4200}=\cfrac{100}{x} \\\\\\ x=\cfrac{4200\cdot 100}{19750}\implies x\approx 21.26582[/tex]
Answer:
21.27 % ( approx )
Step-by-step explanation:
Given,
The sticker price of the car = 23950,
While, the actual price of the car = 19750,
Thus, the percentage of markup = [tex]\frac{\text{Sticker price - Actual price}}{\text{Actual price}}\times 100[/tex]
[tex]=\frac{23950-19750}{19750}\times 100[/tex]
[tex]=\frac{4200}{19750}\times 100[/tex]
[tex]=\frac{420000}{19750}[/tex]
[tex]=21.2658227848\% [/tex]
[tex]\approx 21.27\%[/tex]