The domain:
[tex]8x-9 > 0\to 8x > 9\to x > \dfrac{9}{8}\\\\7x+10 > 0\to 7x > -10\to x > -\dfrac{10}{7}\\\\10x+2 > 0\to 10x > -2\to x > -0.2\\\\D:x\in\left(\dfrac{9}{8};\ \infty\right)[/tex]
If the trapezoid JKLM is an isosceles trapezoid then the legs are congruent.
[tex]|JK|=|LM|\to 8x-9=10x+2\ \ \ |+9\\\\8x=10x+11\ \ \ |-10x\\\\-2x=11\ \ \ |:(-2)\\\\x=-5.5\notin D[/tex]
Answer: Such a trapezoid does not exist.