A charge of 8.4 × 10–4 C moves at an angle of 35° to a magnetic field that has a field strength of 6.7 × 10–3 T. If the magnetic force is 3.5 × 10–2 N, how fast is the charge moving?

Respuesta :

Answer:

The charge is moving with the  velocity of [tex]1.1\times10^{4}\ m/s[/tex].

Explanation:

Given that,

Charge [tex]q =8.4\times10^{-4}\ C[/tex]

Angle = 35°

Magnetic field strength [tex]B=6.7\times10^{-3}\ T[/tex]

Magnetic force [tex]F=3.5\times10^{-2}\ N[/tex]

We need to calculate the velocity.

The Lorentz force exerted by the magnetic field on a moving charge.

The magnetic force is defined as:

[tex]F = qvB\sin\theta[/tex]

[tex]v = \dfrac{F}{qB\sin\theta}[/tex]

Where,

F =  Magnetic force

q = charge

B = Magnetic field strength

v = velocity

Put the value into the formula

[tex]v =\dfrac{3.5\times10^{-2}}{8.4\times10^{-4}\times6.7\times10^{-3}\times\sin35^{\circ}}[/tex]

[tex]v =\dfrac{3.5\times10^{-2}}{8.4\times10^{-4}\times6.7\times10^{-3}\times0.57}[/tex]

[tex]v = 10910.36\ m/s[/tex]

[tex]v = 1.1\times10^{4}\ m/s[/tex]

Hence, The charge is moving with the  velocity of [tex]1.1\times10^{4}\ m/s[/tex].

Answer:

D. 1.1 x 10^4 m/s

Explanation:

just took the exam

Q&A Education