Respuesta :

since we know the function is linear, then we can just use any two points off the table, hmmm say let's use -2, -6 and 2, 14 then,

[tex]\bf \begin{array}{ccll} x&y\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ -4&-16\\ \boxed{-2}&\boxed{-6}\\ 0&4\\ \boxed{2}&\boxed{14}\\ 4&24 \end{array}\qquad \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ -2 &,& -6~) % (c,d) &&(~ 2 &,& 14~) \end{array} \\\\\\ % slope = m slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{14-(-6)}{2-(-2)}\implies \cfrac{14+6}{2+2}\implies \cfrac{20}{4}\implies 5[/tex]
Q&A Education