PLEASE HELP ME ASAP!!!!
Denali peaks at 20,320 ft. What is the distance from this peak to the horizon, rounded to the nearest mile? Assume that the distance from the center of the earth to any point on the earth's surface is 4,000 miles.

Respuesta :

Draw it out as a triangle and use the Pythagorean Theorem to solve.
 
See the attached picture:

Ver imagen musiclover10045

The distance from peak to horizon 176 miles.

What is the Pythagorean theorem?

  • The square of the hypotenuse length of a right triangle equals the sum of the squares of the lengths of the other two sides, according to a geometric theorem.
  • The Pythagorean Theorem demonstrates how the side lengths of a right triangle can be calculated from the sum of the areas of three intersecting squares.

First convert ft in miles.

                                  1 mile = 5,280 ft

                                  H = 20,320/5,280 = 3.85 miles

                                  R = 4,000 miles

Now we use Pythagorean theorem,

                             D ² + R² = ( S + H)²

                              D² + 4000 = ( 4000 + 3.85 )²

                               D² + 16000000 = 16030814.82

                               D² = 16030814.82 - 16000000

                               D² = 30814.82

                               D = [tex]\sqrt{30814.82}[/tex]  

                               D =  175.5 ⇒ 176 miles

Therefore, The distance from peak to horizon 176 miles.

Learn more about Pythagorean theorem brainly.com/question/22568405 here

#SPJ2

                                       

Q&A Education