Respuesta :
Please, try typing
-1
f (x) to indicate "inverse function."
Type f(x) = 1/9x -2 as f(x) = (1/9)x -2
1) replace f(x) with y: y = (1/9)x -2
2) Interchange x and y: x = (1/9)y - 2
3) Solve for y: 9x = y - 18, or y = 9x + 18
4) replace y with
-1
f (x)
Then
-1
f (x) = 9x + 18 (answer)
-1
f (x) to indicate "inverse function."
Type f(x) = 1/9x -2 as f(x) = (1/9)x -2
1) replace f(x) with y: y = (1/9)x -2
2) Interchange x and y: x = (1/9)y - 2
3) Solve for y: 9x = y - 18, or y = 9x + 18
4) replace y with
-1
f (x)
Then
-1
f (x) = 9x + 18 (answer)
Answer:
[tex]f^{-1}(x)[/tex] will be equal to 9y+18
Step-by-step explanation:
We have given [tex]f(x)=\frac{1}{9}x-2[/tex]
Now let [tex]f(x)=y[/tex]
So [tex]y=\frac{1}{9}x-2[/tex]
We have to find [tex]f^{-1}(x)[/tex] , means value of x in terms of y
So [tex]y=\frac{1}{9}x-2[/tex]
[tex]y+2=\frac{1}{9}x[/tex]
[tex]x=9y+18[/tex]
So [tex]f^{-1}(x)[/tex] will be equal to 9y+18