Answers:
A) △ACF ≅ △AEB because of ASA.
D) ∠CFA ≅ ∠EBA
E) FC ≅ BE
Solution:
AC ≅ AE; ∠ACD ≅ ∠AED Given
The angle ∠CAF ≅ ∠EAB, because is the same angle in Vertex A
Then △ACF ≅ △AEB because of ASA (Angle Side Angle): They have a congruent side (AC ≅ AE) and the two adjacent angles to this side are congruent too (∠ACD ≅ ∠AED and ∠CAF ≅ ∠EAB), then option A) is true: △ACF ≅ △AEB because of ASA.
If the two triangles are congruent, the ∠CFA ≅ ∠EBA; and FC ≅ BE, by CPCTC (Corresponding Parts of Congruent Triangles are Congruent), then Options D) ∠CFA ≅ ∠EBA and E) FC ≅ BE are true