Respuesta :
For this case we have an equation of the form:
[tex]h (t) = (a / 2) * t ^ 2 + vo * t + h0 [/tex]
Where,
a: acceleration
vo: initial speed
h0: initial height.
In this case we have the following equation:
[tex]h (t) = - 16t ^ 2 + 19t + 110 [/tex]
Therefore, the initial velocity is:
[tex]vo = 19 ft / s [/tex]
Answer:
The initial velocity when the rock is thrown is:
vo = 19 ft / s
[tex]h (t) = (a / 2) * t ^ 2 + vo * t + h0 [/tex]
Where,
a: acceleration
vo: initial speed
h0: initial height.
In this case we have the following equation:
[tex]h (t) = - 16t ^ 2 + 19t + 110 [/tex]
Therefore, the initial velocity is:
[tex]vo = 19 ft / s [/tex]
Answer:
The initial velocity when the rock is thrown is:
vo = 19 ft / s
we know that
[tex]h(t)=( \frac{1}{2} )a t^{2} +v0t+h0[/tex]
Where:
a: is the acceleration
vo: is the initial velocity
h0: is the initial height
in this problem
a=-32 ft/sec²
v0= 19 ft/sec
h0=110 ft
Substituting values we have:
[tex]h(t)=-16 t^{2} +19t+110[/tex]
The initial velocity is : vo = 19 feet / s
The answer is
The initial velocity is vo = 19 feet / s
[tex]h(t)=( \frac{1}{2} )a t^{2} +v0t+h0[/tex]
Where:
a: is the acceleration
vo: is the initial velocity
h0: is the initial height
in this problem
a=-32 ft/sec²
v0= 19 ft/sec
h0=110 ft
Substituting values we have:
[tex]h(t)=-16 t^{2} +19t+110[/tex]
The initial velocity is : vo = 19 feet / s
The answer is
The initial velocity is vo = 19 feet / s