Respuesta :
We have the following system of linear equation:
(1) [tex]x+6y=29[/tex]
(2) [tex]2x-4y=-6[/tex]
Let's apply elimination method by multiplying (1) by -2, then:
[tex]-2(x+6y)=-2(29)[/tex]
∴ [tex]-2x-12y = -58[/tex]
Next let's subtract (1) and (2):
(1) [tex]-2x-12y = -58[/tex]
(2) [tex]2x-4y=-6[/tex]
_______________________
[tex]-16y=-64[/tex]
∴ [tex]y=4[/tex]
Finally, substituting this value in (1) we have that:
[tex]x+6(4)=29[/tex]
∴ [tex]\boxed{x=5}[/tex]
(1) [tex]x+6y=29[/tex]
(2) [tex]2x-4y=-6[/tex]
Let's apply elimination method by multiplying (1) by -2, then:
[tex]-2(x+6y)=-2(29)[/tex]
∴ [tex]-2x-12y = -58[/tex]
Next let's subtract (1) and (2):
(1) [tex]-2x-12y = -58[/tex]
(2) [tex]2x-4y=-6[/tex]
_______________________
[tex]-16y=-64[/tex]
∴ [tex]y=4[/tex]
Finally, substituting this value in (1) we have that:
[tex]x+6(4)=29[/tex]
∴ [tex]\boxed{x=5}[/tex]
Answer:
-6y + 29 for the first and second question. The third answer is y=4. The fourth answer is x=5. The fifth answer (5,4). And the sixth answer is (5,4) Checks and (5,4) Checks.
Step-by-step explanation:
Just took it. Edg 2020. Hope this helps :)