Let X₁, X₂, X₃, ..., Xₙ be a random sample of size n taken from an exponential distribution with unknown parameter β. Find the likelihood function for the unknown parameter.
L(β) = n ln(β) − ∑
i=1
n
xᵢ − ln(β)
L(β) = β⁻ⁿ e^(β) − ∑
i=1
n
xᵢ
L(β) = βⁿᵉ e^(β) − Π
i=1
n
xᵢ
L(β) = ∑
i=1
n
β⁽¹⁄ⁿ⁾ e^(β⁽¹⁄ⁿ⁾) − ∑
i=1
n
xᵢ
```