Use the simplex method to solve the linear programming problem. Maximize subject to z=8x1−7x2+2x32x1−x2+8x3≤444x1−5x2+6x3≤682x1−2x2+6x3≤30x1≥0,x2≥0,x3≥0. Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. The maximum is when x1=x2=,x3=s1=,s2= and s3= B. There is no maximum.