Triangle \[\triangle A'B'C'\] is the image of \[\triangle ABC\] under a rotation about the origin, \[(0,0)\]. \[\small{1}\] \[\small{2}\] \[\small{3}\] \[\small{4}\] \[\small{5}\] \[\small{6}\] \[\small{7}\] \[\small{\llap{-}2}\] \[\small{\llap{-}3}\] \[\small{\llap{-}4}\] \[\small{\llap{-}5}\] \[\small{\llap{-}6}\] \[\small{\llap{-}7}\] \[\small{1}\] \[\small{2}\] \[\small{3}\] \[\small{4}\] \[\small{5}\] \[\small{6}\] \[\small{7}\] \[\small{\llap{-}2}\] \[\small{\llap{-}3}\] \[\small{\llap{-}4}\] \[\small{\llap{-}5}\] \[\small{\llap{-}6}\] \[\small{\llap{-}7}\] \[y\] \[x\] \[A\] \[B\] \[C\] \[A'\] \[B'\] \[C'\] Determine the angle of rotation. Choose 1 answer: Choose 1 answer: (Choice A) \[-165^\circ\] A \[-165^\circ\] (Choice B) \[-135^\circ\] B \[-135^\circ\] (Choice C) \[135^\circ\] C \[135^\circ\] (Choice D) \[165^\circ\] D \[165^\circ\]

Q&A Education