Given the sequences, both starting at n=0,x[n]=[1 −3 2 −1] and h[n]=δ[n]−δ[n−3], the result of the linear convolution y[n]=x[n]∗h[n] is:

A) Starting at n=0, y[n] = [1 -4 5 -3 1]
B) y[n]=δ[n]−4δ[n−1]+5δ[n−2]−3δ[n−3]+δ[n−4]
C) Starting at n=0, y[n] = [1 -3 2 -2 3 -2 1]
D) y[n]=δ[n]−3δ[n−1]+2δ[n−2]−2δ[n−3]+3δ[n−4]−2δ[n−5]+δ[n−6]
E) none of the above are true
F) c and d are true
G) a and b are true

Q&A Education