Consider the vector field F(x, y, z) = 2²7+ y² + x² on R³ and the following orientation-preserving parameterizations of surfaces in R³. (a) H is the hemisphere parameterized over 0 € [0, 2π] and € [0,] by Σ(0,0) = cos(0) sin(o) + sin(0) sin(0)3 + cos(o)k. Compute (VxF) dA using the Kelvin-Stokes theorem. (b) C is the cylinder parameterized over 0 € [0, 2π] and z € [0, 2] by r(0, 2) = cos(0)7+ sin(0)j + zk. Compute (VxF) dA using the Kelvin-Stokes theorem. (Notice: the cylinder's boundary OC has two components. Careful with orientation.)