Find an equation of the line through the point (2, 3) that cuts off the least area from the first quadrant. This is a practice of optimization. Hints: To get started, let's write s for the slope of the line. Then write down the equation of the line, with s involved. (Which interval must s live in, in order for the line to cut off a nontrivial area from the first quadrant?) Note that the resulting area must be a triangle. You can write down the area of a triangle once you know its base and its height. The base here is given by the horizontal intercept of the line, and the height is the vertical intercept of the line. Find these intercepts, and then express the area of the triangle as a function of s.

Q&A Education