Which of the following statements is NOT correct? (A) A transition matrix is always invertible. (B) If a matrix is invertible then its transpose is also invertible. (C) If the system Ax = b has a unique solution (where A is a square matrix and b is a column vector), then A is invertible. (D) A diagonalisable matrix is always invertible. (E) If the determinant of a matrix is 0 then the matrix is not invertible. 2. Let f be a linear map from R¹¹ to R¹. The possible values for the dimension of the kernel of f are: (A) all integrer values between 0 and 11. (B) all integrer values between 7 and 11. (C) all integrer values between 1 and 11. (D) all integrer values between 0 and 4. (E) all integrer values between 0 and 7. 0 3. Let f be the linear map from R³ to R³ with standard matrix 0 Which of the following is a geometric description for f? (A) A rotation of angle 7/3 about the z-axis. (B) A rotation of angle π/6 about the x-axis. (C) A reflection about the plane with equation √3y - x = 0. (D) A rotation of angle π/6 about the z-axis. (E) A reflection about the plane with equation √3x - y = 0. HINN 2 NITNIS √3