Determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify your answer. T: R³-R², T(e₁)=(1,4), T(eā‚‚) = (3,-5), and T(e3)=(-4,1), where e₁,e2, e3 are the columns of the 3x3 identity matrix. C a. Is the linear transformation one-to-one? O A. T is not one-to-one because the columns of the standard matrix A are linearly independent. O B. T is not one-to-one because the standard matrix A has a free variable. O C. T is one-to-one because T(x) = 0 has only the trivial solution. O D. T is one-to-one because the column vectors are not scalar multiples of each other.

Q&A Education