Convert the system x1 I3 4 -3x1 + 4x2 7x3 10 to an augmented matrix. Then reduce the system to echelon form and determine if the system is consistent. If the system in consistent, then find all solutions. Augmented matrix: [[1,-2,1,-4].[-3,4,-7,10]] Echelon form: [[-3,4,-7,10].[-1,1,-1,1]] Is the system consistent? yes Solution: (#1, #2, #3) = -4 + -4 81, -4 + 0 81, 0 + 0 Help: To enter a matrix use [[ ],[ ]]. For example, to enter the 2 x 3 matrix [223] 65 you would type [[1,2,3].[6,5,4]], so each inside set of [] represents a row. If there is no free variable in the solution, then type 0 in each of the answer blanks directly before each $β. For example, if the answer is (β, 2, 3) = (5,-2, 1), then you would enter (5 + 08β, β2+08β, 1+Osβ). If the system is inconsistent, you do not have to type anything in the "Solution" answer blanks. 2xβ +