Determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify your answer. T(X₁ X2 X3 X4) = (x₂ +X3₁X₁ + X₂₁X₁ + X₂,0) a. Is the linear transformation one-to-one? O A. T is one-to-one because the column vectors are not scalar multiples of each other. O B. T is one-to-one because T(x) = 0 has only the trivial solution. O C. T is not one-to-one because the columns of the standard matrix A are linearly independent. O D. T is not one-to-one because the standard matrix A has a free variable.

Q&A Education