The general solution for the Euler DE ²y + 2xy-6y=0, z>0 is given by A. y = C₁+C₂z², B. y=C₁z³+ C₂z², C. y =Cr}+Cả, |= D. None of these, E. y=Cr+C 8. 2 points The general solution to the DE y" + 16y = 0 is A. y = C₁ cos(4x) + C₂ sin(4x), B. y = C₁ cos(2x) + C₂ sin(21), C. None of these. D. y Cie+ C₂e-42, E. y Cie+ C₂ze. 9. 3 points Let (y₁, 32, 33} be a fundamental set of solutions for the DE y" + 3xy" +4y = 0. If the Wronskian satisfies Wy1, 32, 33] (0) = e then Wy₁, 92, 93] (a) is equal to A. e¹-¹² B. e¹+¹² C. el-3x² D. e¹+3z², E. None of these.