Use Stoke's Theorem to evaluate •ff₁₁₂» (VxF) dS where M is the hemisphere 2² + y² +2²9,220, with the normal in the direction of the positive x direction, and F= (2,0, y¹). Begin by writing down the "standard" parametrization of M as a function of the angle (denoted by "T" in your answer) Jam F-ds=ff(0) do, where f(0) = (use "T" for theta) The value of the integral is PART#B (1 point) Evaluate I fe(sina + 4y) dz + (8 + y) dy for the nonclosed path ABCD in the figure. A= (0,0), B=(4,4), C(4,8), D (0,12) I = PART#C ark and S is the surface of the (1 point) Use the Divergence Theorem to calculate the flux of F across S, where F zi+yj tetrahedron enclosed by the coordinate planes and the plane 11 JS, F. ds= COMMENTS: Please solve all parts this is my request because all part related to each of one it my humble request please solve all parts

Q&A Education