The arterial blood pressure of an individual In a state of relaxation is given by

P(t) = 110 + 21 sin 6t

Where P(t) is measured in mm of mercury (Hg) and t is the time in seconds.

a) Show that the individual's systolic pressure (maximum blood pressure) is 130 and his diastolic pressure (minimum blood pressure) is 90. The maximum value of sin 4t is____and the minimum value of sin 4t is_____. Therefore, the maximum value of P(t) is 110 + 20 (____) = ____and the minimum value of p(t) is 110 + 21 (____) = ____.

b) Find the values of t when the individuals blood pressure is highest.

a. t = pi(2n + 1)/12 (n = 0, 1, 2, .........).

b. t = pi(4n + 1)/12 (n = 0, 1, 2, .........).

c. t = pi(4n + 1)/6 (n = 0, 1, 2, .........).

d. t = pi(2n - 1)/6 (n = 0, 1, 2, .........).

e. t = pi(4n - 1)/12 (n = 0, 1, 2, .........).

c) Find the values of t when the individuals blood pressure is lowest.

a. t = pi(2n - 3)/6 (n = 0, 1, 2, .........).

b. t = pi(4n + 3)/6 (n = 0, 1, 2, .........).

c. t = pi(4n + 3)/12 (n = 0, 1, 2, .........).

d. t = pi(4n - 3)/12 (n = 0, 1, 2, .........).

e. t = pi(2n + 3)/12 (n = 0, 1, 2, .........).

Q&A Education